图解十大 CNN 架构

作者: admin 分类: 新闻国际新闻 发布时间: 2019-08-10 09:17

  

图解十大 CNN 架构

  CNN 取得的大多数进展并非源自更强大的硬件、更多的数据集和更大的模型,而主要是由新的想法和算法以及优化的网络结构共同带来的结果。(Christian Szegedy等人,2014) 补充一点,我们平时看到的卷积神经网络架构是很多因素的结果——升级的计算机硬件、ImageNet比赛、处理特定的任务、新的想法等等。Google 研究员 Christian Szegedy曾提到: 你现在应该已经注意到CNNs开始变得越来越深了。这是因为提高深度神经网络性能最直接的方法是增加它们的大小(Szegedy et. al)。Visual Geometry Group (VGG)的工作人员提出了VGG-16,它有13个卷积层和3个全连接层,继续采用了AlexNet的ReLU激活函数。同样,这个网络只是在AlexNet上堆叠了更多的层。它有138M的参数,占用大约500mb的磁盘空间

如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!